Fatigue
M. Jooybari; J. Shahbazi Karami; M. Sheikhi
Abstract
In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile ...
Read More
In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fatigue strength was not as remarkable as expected. Post-ECAP aging heat treatment to the peak-aging condition imposed a notable change in the strength and ductility of the alloy so that its fatigue strength partly enhanced. An optimized combination of grain refinement and distributed fine precipitates in the matrix of the alloy was achieved by conducting aging heat treatment between passes of ECAP. The proposed procedure was proved to yield the best combination of strength and ductility, better distribution and size of precipitates, and thus a remarkable improvement in the low cycle fatigue response of the investigated material.
Forming
Amir H. Roohi; H. Moslemi Naeini; M. Hoseinpour Gollo; J. Shahbazi Karami; Sh. Imani Shahabad
Abstract
Laser forming is a thermal forming process which uses laser beam irradiation to produce the desired final forms. In this article, the effect of temperature gradient across Al 6061-T6 aluminum sheets on bending angle is studied. Input parameters including laser power, scan velocity, beam diameter, ...
Read More
Laser forming is a thermal forming process which uses laser beam irradiation to produce the desired final forms. In this article, the effect of temperature gradient across Al 6061-T6 aluminum sheets on bending angle is studied. Input parameters including laser power, scan velocity, beam diameter, and sheet thickness are the effective process parameters which influence the temperature gradient. Thus, a set of 81 numerical simulations based on a full factorial design with varying parameters is carried out and temperature gradient across the sheet thickness is measured. Effects of each input parameter on temperature gradient are determined using analysis of variance. Also, an equation is derived which predicts the temperature gradient for any arbitrary input parameter. The validity of the equation is done by comparing actual and predicted results. Numerical simulation is validated by experimental tests, which show a very close agreement. Finally, the effects of temperature gradient for three different sheet thicknesses on a final bending angle are derived. Results demonstrate that increase in temperature gradient across sheet thickness leads to increase in bending angle.
Forming
Gh. Payganeh; J. Shahbazi Karami; K. Malekzadeh Fard
Abstract
In this paper, single, bi-layered and three-layered tube hydroforming processes were numerically simulated using the finite element method. It was found that the final bulges heights resulted from the models were in good agreement with the experimental results. Three types of modeling were kept with ...
Read More
In this paper, single, bi-layered and three-layered tube hydroforming processes were numerically simulated using the finite element method. It was found that the final bulges heights resulted from the models were in good agreement with the experimental results. Three types of modeling were kept with the same geometry, tube material and process parameters to be compared between the obtained hydroformed products (branch height, thickness reduction and wrinkling) using different loading path types. The results were also discussed.