Heat and Mass Transfer
S. Mohammed Ibrahim; K. Suneetha
Abstract
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream ...
Read More
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum, energy, and mass were transformed into ordinary differential equations and solved numerically using shooting method. Velocity, temperature, and concentration distributions were numerically discussed and presented in the graphs. Skin-friction coefficient, the Nusselt number, and Sherwood number on the sheet were derived and discussed numerically. Their numerical values for various values of physical parameters were presented in the tables. It was found that temperature increased with increasing radiation parameter, R, and concentration decreased with increasing the Schmidt number, Sc. The numerical predications were compared with the existing information in the literature and a good agreement was obtained.
Heat and Mass Transfer
J. Prakash; K. S. Balamurugan; S. Vijaya Kumar Varma
Abstract
An analytical study was performed to study effects of thermo-diffusion and chemical reactions on a three-dimensional MHD mixed convective flow of dissipative fluid along an infinite vertical porous plate with transverse sinusoidal suction velocity. The parabolic partial differential equations governing ...
Read More
An analytical study was performed to study effects of thermo-diffusion and chemical reactions on a three-dimensional MHD mixed convective flow of dissipative fluid along an infinite vertical porous plate with transverse sinusoidal suction velocity. The parabolic partial differential equations governing the fluid flow, heat transfer, and mass transfer were solved using perturbation technique and the expressions for velocity, temperature, and concentration distributions were obtained. Expressions for skin friction at the plate in the direction of the main flow, rate of heat transfer, and mass transfer from the plate to the fluid were derived in a non-dimensional form. Velocity, temperature, concentration, amplitudes of the perturbed parts of skin friction, rate of heat transfer, rate of mass transfer, and skin friction at the plate are presented in graphs and effects of various physical parameters like Hartmann number M, Prandtl number Pr, Reynolds number Re, Schmidt number Sc, Soret number So, Grashof number for heat transfer Gr, Grashof number for mass transfer Gm, and chemical reaction parameter Kr on the above flow quantities were analyzed and then the obtained results were physically interpreted.
Forming
Mohammad Riahi; Mohamad Hoseinpour Gollo; Seiied Nader Ameli Kalkhoran
Abstract
Laser forming is a modern process which is mainly used for forming metals. Different Lasers are used in this regard that includes Nd: YAG and CO2. In this study, forming bi-layer sheets of Aluminum/Ceramic by Laser was investigated. Furthermore, effect of Uniform and Gaussian heat flux distribution in ...
Read More
Laser forming is a modern process which is mainly used for forming metals. Different Lasers are used in this regard that includes Nd: YAG and CO2. In this study, forming bi-layer sheets of Aluminum/Ceramic by Laser was investigated. Furthermore, effect of Uniform and Gaussian heat flux distribution in different power, velocity, and beam diameters on bending angle was studied. FEM simulation indicated that, in the same conditions of analysis, Uniform heat flux distribution caused higher bending angle than Gaussian heat flux distribution. Moreover, the results showed that there was an optimum point at different speeds and laser beam diameters, at which the bending angle was maximum. In order to evaluating the numerical results, a set of experiments was conducted, which showed good agreement.
Heat and Mass Transfer
M. Rahimi; M. Mortazaei
Abstract
Jet impingement heat transfer is an effective and practical approach that is employed in many industrial processes where heating, cooling, or drying is required. Details of the heat or mass transfer rate have been investigated both experimentally and numerically and can be found in the published literature. ...
Read More
Jet impingement heat transfer is an effective and practical approach that is employed in many industrial processes where heating, cooling, or drying is required. Details of the heat or mass transfer rate have been investigated both experimentally and numerically and can be found in the published literature. In most of the numerical studies, control-volume approach has been employed to solve the governing equations of the thermal and flow fields. Using this numerical approach, a pressure correction equation is usually developed from the conservation equations in a rigorous manner to obtain the pressure distribution. Avoiding the complexities encountered in the traditional manner, a full implicit finite-difference method was developed for the first time and applied for studying jet impingement heat transfer. Similar to the velocity components, static pressure was also treated as an unknown variable in this approach. Specifications of both flow and thermal fields were obtained for two cases of confined and unconfined jets by the proposed numerical method. It was demonstrated that this novel numerical approach was a straightforward method, which required no additional equation for pressure calculation, and had the potential use in other two- or three-dimensional flow and thermal field analysis.
Heat and Mass Transfer
M. Ghalambaz; A. Noghrehabadi
Abstract
In this paper, natural convection heat transfer over a vertical plate in a Darcy porous medium saturated with a nanofluid subject to heat generation/absorption was theoretically studied. The governing partial differential equations were transformed to a set of ordinary differential equations using similarity ...
Read More
In this paper, natural convection heat transfer over a vertical plate in a Darcy porous medium saturated with a nanofluid subject to heat generation/absorption was theoretically studied. The governing partial differential equations were transformed to a set of ordinary differential equations using similarity transformations and solved using finite difference method. The influence of parametric variation of the Brownian motion parameter, thermophoresis parameter and heat generation/absorption parameter on velocity, temperature and nanoparticles concentration profiles was graphically shown. Impact of non-dimensional parameters on the reduced Nusselt number and reduced Sherwood number was also investigated. The results showed that an increase in the heat generation/absorption parameter would increase temperature and velocity profiles; but, it would decrease concentration profiles. Increase of thermophoresis parameter increased magnitude of concentration profiles while not showing any significant effect on velocity and temperature profiles. The results also indicated that increase of Brownian motion parameter did not demonstrate any significant effect on the magnitude of velocity and temperature profiles. It was found that an increase in the heat generation/absorption parameter decreased the reduced Nusselt number whereas it increased the reduced Sherwood number. For negative values of the Brownian motion parameter, increase of the thermophoresis parameter increased the reduced Nusselt and Sherwood numbers.
Heat and Mass Transfer
T. Sudhakar Reddy; M. C. Raju; S. V. K. Varm
Abstract
In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction ...
Read More
In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction and viscous dissipation with constant heat and mass flux. The non-dimensional governing equations were solved analytically and the expressions were found for velocity, temperature and concentration fields. Also, the expression for skin friction near the plate was derived and the results were discussed in a table.
Heat and Mass Transfer
M. Nasiri; B. Ghasemi
Abstract
This paper modeled heating air of a room through examining free convection in a 3D chamber. The chamber had cold and hot sources with Tc and Th temperatures, respectively. Its other walls were adiabatic. This study aimed at predicting effect of temperature difference, displacement of hot and cold sources ...
Read More
This paper modeled heating air of a room through examining free convection in a 3D chamber. The chamber had cold and hot sources with Tc and Th temperatures, respectively. Its other walls were adiabatic. This study aimed at predicting effect of temperature difference, displacement of hot and cold sources and their aspect ratio on flow field, temperature and heat transfer rate. To conduct the study, mass conservation, momentum and energy equations were applied in laminar and 3D states while assuming fluid constant properties, except density, in the power of buoyancy (Boussinesq approximation). Final difference method (FDM) was used for numerical solution of the governing equations based on the volume control and SIMPLE algorithm. According to the modeling results, the most favorable temperature distribution in the chamber (room) was obtained when the heat source (radiator) was located on the wall under the cold source (window). Reducing the distance between the two sources would result in increasing heat transfer from the heating sources.
Heat and Mass Transfer
M. Gnaneswara Reddy
Abstract
This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential ...
Read More
This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method. Numerical results for the dimensionless velocity, microrotation and temperature profiles were obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution. The skin friction and the rate of heat transfer were also computed and presented through tables. Favorable comparison with previously published work was performed.
Heat and Mass Transfer
Aminreza Noghrehabadi; Mohammad Ghalambaz; Amin Samimi
Abstract
In this paper, an integration of a symbolic power series method - Padé approximation technique (PS - Padé), was utilized to solve a system of nonlinear differential equations arising from the similarity solution of laminar thermal boundary layer over a flat plate subjected to a convective ...
Read More
In this paper, an integration of a symbolic power series method - Padé approximation technique (PS - Padé), was utilized to solve a system of nonlinear differential equations arising from the similarity solution of laminar thermal boundary layer over a flat plate subjected to a convective surface boundary condition. As both boundary conditions tended to infinity, the combination of series solutions with the Padé approximants was used for handling boundary conditions on the semi-infinite domain of solution. The combination of power series and Padé proposed an alternative approach of solution which did not require small parameters and avoided linearization and physically unrealistic assumptions. The results of the present approach were compared with numerical results as well as those of previous works reported in the literature. The obtained results represented remarkable accuracy in comparison with the numerical ones. Finally, reduced Nusselt number, as an important parameter in heat transfer, was calculated by the obtained analytical solution. The present power series-Padé technique was very simple and effective, which could develop a simple analytic solution for flow and heat transfer over the flat plate. The results of the present study could be easily used in practical applications.