Computational Fluid Dynamics (CFD)
Saeed Akbarnejad; Masoud Ziabasharhagh
Abstract
This paper presents a novel 1D modeling approach to optimize steam ejector entrainment ratios, introducing new definitions of ejector efficiency and methods for enhancement. Using the proposed model, an ejector is tailored for specific boundary conditions with available CFD results for validation. Dimensional ...
Read More
This paper presents a novel 1D modeling approach to optimize steam ejector entrainment ratios, introducing new definitions of ejector efficiency and methods for enhancement. Using the proposed model, an ejector is tailored for specific boundary conditions with available CFD results for validation. Dimensional and geometrical parameters are computed from the theoretical 1D model, and various geometries are explored using CFD to determine entrainment ratios.Innovative definitions of ejector efficiency are introduced. The first definition compares the entrainment ratio of the ejector to a system comprising a steam compressor, turbine, and mixer, yielding an efficiency of 13.5% under specified conditions. The second, more practical definition calculates the maximum achievable entrainment ratio, disregarding frictional losses, resulting in an efficiency of 70%.An algorithm is proposed to optimize ejector dimensions to approach this maximum. Using this algorithm, the optimum throat diameter was determined through CFD analysis, demonstrating an increase in the entrainment ratio from 0.7 to 1.25. The theoretical maximum value calculated by the 1D model is 1.282, indicating 97.7% of the theoretical maximum was achieved in CFD simulations. This highlights the significant improvement in the entrainment ratio using the 1D model and delineates its limit under given conditions.The third definition establishes the theoretical maximum entrainment ratio given specific boundary conditions and dimensions, assuming no losses in the nozzle, mixing process, or diffuser, yielding an efficiency of 81% for the same ejector studied.
Computational Fluid Dynamics (CFD)
Nader Pourmahmoud; Aydin Zabihi
Abstract
Cooling tubes are inserted into the desiccant dehumidifier liquid of a 3-fluid liquid-to-air membrane energy exchanger (LAMEE) in order to regulate the temperature of the dehumidifier liquid. As a result, the 3-fluid LAMEE's performance is significantly influenced by the refrigerated tubes. The numerical ...
Read More
Cooling tubes are inserted into the desiccant dehumidifier liquid of a 3-fluid liquid-to-air membrane energy exchanger (LAMEE) in order to regulate the temperature of the dehumidifier liquid. As a result, the 3-fluid LAMEE's performance is significantly influenced by the refrigerated tubes. The numerical analysis of the present work shows that the number of chilled tubes and their inner diameter affect the effectiveness (total, latent, and sensible) rate of moisture removal and adequate cooling power, and exergy loss. Additionally, the dehumidifier liquid channel receives the addition of wavy cooling tubes for the first time. The relationship between wave height and wave length is known as wave steepness, and its impact on efficiency and energy loss is also examined. Numerical studies show that the number and inner diameter of the cooling tubes have a direct correlation with the efficiency of the 3-fluid LAMEE. The improved the efficiency, the more cooled tubes there are and the larger their diameter. Furthermore, both exergy loss and without dimensions exergy loss increase with the quantity and diameter of refrigerated tubes. The sensible and latent effectiveness of the 3-fluid LAMEE is increased by the wavy refrigeration tubes as compared to straight tubes; the augmentation of the sensible and latent effectiveness increases with wave steepness.
Computational Fluid Dynamics (CFD)
Nader Pourmahmoud; Aydin Zabihi
Abstract
3-fluid liquid-to-air membrane energy exchangers (LAMEEs) are economic dehumidification systems; cooling tubes are put into dehumidifier liquid channels to regulate the internal temperature of the dehumidifier liquid. 3D computational fluid dynamics is used to simulate a 3-fluid LAMEE, and extra transfer ...
Read More
3-fluid liquid-to-air membrane energy exchangers (LAMEEs) are economic dehumidification systems; cooling tubes are put into dehumidifier liquid channels to regulate the internal temperature of the dehumidifier liquid. 3D computational fluid dynamics is used to simulate a 3-fluid LAMEE, and extra transfer of both heat and mass formulas, along with the essential equations that govern for viscous fluid flow, are compiled using external computer programs known as UDS (User Defined Scalar). This study thoroughly investigates the impact of the water inflow variables on system efficiency. The refrigeration fluid that runs inside the cooling tubes is water. The temperature distribution of the three fluids is investigated and the role of the refrigeration tubes based on their positions is evaluated on the desiccant solution cooling. Six tests are conducted to achieve the best arrangement of the inlet water conditions based on the tube’s geometrical location. At an intake water mass flow rate of 4.67 g/s, the latent and sensible effectiveness rise from51% to 78% and 60% to 130%, respectively, when the input water temperature drops from 24.6 °C to 10.1 °C.
Computational Fluid Dynamics (CFD)
Vikram Ashok Kolhe; Vishal D Chaudhari; Suyash Yashwant Pawar; Ravindra L Edlabadkar; Kailas Chandratre
Abstract
Measuring flow rate precisely in laminar flow has been a difficult task, especially when utilizing a Coriolis mass flow meter (CMFM) for low flow rate measurements. The meter often under reads the mass flow rate, making it less useful in these conditions. The dominant factor affecting the CMFM's performance ...
Read More
Measuring flow rate precisely in laminar flow has been a difficult task, especially when utilizing a Coriolis mass flow meter (CMFM) for low flow rate measurements. The meter often under reads the mass flow rate, making it less useful in these conditions. The dominant factor affecting the CMFM's performance in laminar regions is secondary flow, which overshadows the generated Coriolis force, leading to an under-reading of flow rate. Previous studies have indicated that tube curvature is the most significant parameter affecting secondary flow generation and the overall performance of the meter. An omega-shaped tube configuration featuring a continuous curvature has been identified as the optimal shape for maximizing a CMFM device’s performance in laminar flow. The purpose of the investigation is to study and compare the efficiency of various Omega tube designs that have undergone slight geometric alterations. Four different configurations were evaluated for maximum time lag by vibrating at their respective natural frequencies and keeping the sensor position along the centerline of the tube configuration.
Computational Fluid Dynamics (CFD)
Alireza Alinezhad; Ataallah Soltani Goharrizi; Ataallah Kamyabi
Abstract
In this paper, heat transfer and fluid flow around a solid cylinder wrapped with a porous layer in the channel were studied numerically by computational fluid dynamics (CFD). The homogeneous concentric and eccentric porous medium round a rigid, solid cylinder are supposed at local thermal equilibrium. ...
Read More
In this paper, heat transfer and fluid flow around a solid cylinder wrapped with a porous layer in the channel were studied numerically by computational fluid dynamics (CFD). The homogeneous concentric and eccentric porous medium round a rigid, solid cylinder are supposed at local thermal equilibrium. The transport phenomena within the porous layer, volume averaged equations were employed, however the conservation laws of mass, momentum and energy were applied in the channel. The main purpose of this study is analyzed and compared the heat flux of concentric and eccentric porous layer in Reynolds number range of 1 to 40 and Darcy numbers of 10-2 to 10-6. It is found that with the decline of Darcy number, the vortex length is increased behind the solid cylinder surface. In addition, the heat flux rate of the cylinder is raised with the increase of Reynolds number. Finally, the results showed that the average Nusselt numbers in different Darcy and Reynolds numbers are higher in the eccentric porous layer than in the concentric porous layer. For example, our findings show that in Da=〖10〗^(-5), Re=40 and d=0.07 m, the average Nusselt number in the eccentric porous layer is 7.5% higher than the concentric porous layer.
Computational Fluid Dynamics (CFD)
Behnam Dilmaghani Hassanlouei; Nader Pourmahmoud; Pierre Sullivan
Abstract
In this article, an extracorporeal membrane oxygenator (ECMO) is simulated in 2D geometry using computational fluid dynamics (CFD). Momentum and mass transport equations were solved for the laminar flow regime (30 < Re < 130 for the blood channel) using the finite element method. In this study, ...
Read More
In this article, an extracorporeal membrane oxygenator (ECMO) is simulated in 2D geometry using computational fluid dynamics (CFD). Momentum and mass transport equations were solved for the laminar flow regime (30 < Re < 130 for the blood channel) using the finite element method. In this study, the software COMSOL was used as the solver. To this end, the main problem of ECMO devices is the pressure drop and the risk of thrombus formation due to blood stagnation, so to solve this problem, the oxygen transfer rate to the blood should be increased. Therefore, in the present study, to optimize the oxygen transfer rate of the blood, three basic parameters were examined: blood flow velocity, oxygen velocity, and membrane thickness. Blood flow was considered at five different velocities (0.2, 0.4, 0.5, 0.6, and 0.8 mm/s). Results showed that increased blood flow velocity adversely affected oxygen permeability, increasing oxygen permeability from about 60% at 0.2 mm/s to about 24% at 0.9 mm/s. In addition, five different membrane thicknesses (0.04, 0.06, 0.08, 0.2, and 0.3 mm) were investigated, and, as expected, better oxygen exchange occurred as the membrane thickness decreased. We also found that the diffusion rate is about 40% for the 0.4 mm/s thin films and about 25% for the same inlet velocity and larger film thickness. Furthermore, the oxygen diffusivity increases from 28% to 38% as the oxygen gas velocity increases. However, oxygen velocities above 0.8 mm/s should not be used, as the range of oxygen diffusivity variation decreases with higher oxygen gas velocities.
Computational Fluid Dynamics (CFD)
Devesh Kumar Baghel; Sobha Lata Sinha; Satish Kumar Dewangan
Abstract
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat ...
Read More
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat transfer due to convection is leading over the thermal radiation in incubators. The aim of this article is to study the airflow modeling and heat transfer coefficient over an infant’s body inside the incubator. For this purpose, an experiment and a numerical simulation are carried out to develop the methodology, and subsequently computational fluid dynamics (CFD) analysis is accomplished to evaluate the heat transfer coefficient of a preterm infant. By means of the shear stress transport (SST K-ω) turbulence model, 3-D computational, models are numerically studied using the commercial CFD tool Star CCM+. Flow visualization reveals that a large-scale flow circulation pattern is produced in the mean region of the enclosed chamber, and small-scale eddies are generated at corners and close to the walls. The numerical results obtained for heat transfer assessment in the present study are validated with experimental and numerical results available in biomedical open literature.
Computational Fluid Dynamics (CFD)
Golchehreh Shajari; Morteza Abbasi; Mehran Khaki Jamei
Abstract
In this study, comprehensive numerical simulations were conducted to examine laminar pulsatile developing flows through flat channels. The developing velocity fields and the hydrodynamic entry length were explored for the Reynolds numbers from 20 to 200, and the low and intermediate non-dimensional pulsation ...
Read More
In this study, comprehensive numerical simulations were conducted to examine laminar pulsatile developing flows through flat channels. The developing velocity fields and the hydrodynamic entry length were explored for the Reynolds numbers from 20 to 200, and the low and intermediate non-dimensional pulsation frequency or the Womersley number (1.08 ≤Wo≤ 8.86). For all simulations, the pulsating amplification factor was considered from zero to one, (0 ≤A≤ 1), and to achieve more practical and relevant outcomes, time-dependent parabolic inlet velocity profiles were applied. The outcomes reveal that for the higher values of the pulsation frequency or the Womersley number (6 ≤ Wo ≤ 8.66), the maximum pulsatile entranced length during a cycle is close to the inlet length of the mean component of the flow. On the other hand, for the rest of the Womersley number range (1.08 ≤ Wo < 6), and high amplification factor (0.5 ≤ A), the value of the entrance length increases and is significantly different from the development length of the steady component. Moreover, the results demonstrate that the entry length correlates with the Womersley number through a power-law function, whilst it has linear correlations with the Reynolds number and the amplification factor. Further, using the result of the accomplished numerical study, a practical correlation of the entrance length is offered to be used in the design phase for any type of pulsatile flow through the flat channels.
Computational Fluid Dynamics (CFD)
Tamil Chandran A; Suthakar T; Balasubramanian KR; Rammohan S; Jacob Chandapillai
Abstract
Abstract Numerical analysis of drag coefficient of three-dimensional bluff bodies such as flat plates, cylinder, triangular prism, semicircular profiles located in the flow path of the pipe was performed. Bluff bodies of various lengths are analysed using a turbulence model. The effect of bluff body ...
Read More
Abstract Numerical analysis of drag coefficient of three-dimensional bluff bodies such as flat plates, cylinder, triangular prism, semicircular profiles located in the flow path of the pipe was performed. Bluff bodies of various lengths are analysed using a turbulence model. The effect of bluff body thickness on drag coefficient was analysed. A significant observation of the study is the reduction in drag coefficient with an increase in thickness. Effect of pressure coefficient on drag coefficient was evaluated. The study confirms that frictional coefficient has negligible effect on drag coefficient in the studied Reynolds number range. Change in drag coefficient over a wide range of Reynolds number was studied and is reported. Irrespective of geometry and length, the study indicates that there is a significant difference in drag coefficient between two dimensional and three dimensional simulation studies. It is also concluded that the length of a bluff body in a confined domain has a significant effect on its drag coefficient.
Computational Fluid Dynamics (CFD)
Mithilesh K Sahu; Moughbul Basha Shaik
Abstract
The new and advance technologies for higher performance and lower maintenance are required to operate gas turbines at higher operating temperatures. Higher turbine inlet temperature results in higher blade metal temperatures. These variations in temperatures of the blade material must be limited ...
Read More
The new and advance technologies for higher performance and lower maintenance are required to operate gas turbines at higher operating temperatures. Higher turbine inlet temperature results in higher blade metal temperatures. These variations in temperatures of the blade material must be limited such that the blades have a sufficient life span. To make blade material temperature within the limits, the coolant air is bled from the compressor to protect the outer surface of the turbine blade from the hot gases. The purpose of this study is to investigate the cooling performance of a blade with leading edge cooling holes. The numerical simulation approach using ANSYS Fluent has been considered. The analysis is performed by taking different hole geometries namely cylindrical (model 1) and tapered (model 2) on the leading edge of the turbine blade for different blowing ratios. The analysis also compares the cooling effectiveness of the blade for two different coolants namely air and nitrogen. The results show that for highest effectiveness hole (E3 hole), Model 1 and Model 2 comparison suggest that Model 1 has 1.2% more cooling effectiveness for air as coolant. For E3 hole, the comparison of Model 1 between two coolants show that film cooling effectiveness of the air gives 0.6% more film cooling effectiveness compared to nitrogen. The presented work helps researchers and blade manufacturers to select the correct hole geometry, coolant type, and determine the best blowing ratio to improve the film cooling efficiency of gas turbine blades with leading edge holes.
Computational Fluid Dynamics (CFD)
Sajad Rezazadeh; Mohammadreza Mataji Amirrud; Mohammad Raad; Davod Abbasinejad
Abstract
A numerical simulation of laminar fluid flow and heat transfer over built-in cylinders in a channel is presented. Effects of cylinders that located in a rectangular channel with constant wall temperature on flow and heat transfer have been investigated by the drag coefficient on cylinders wall, skin-friction ...
Read More
A numerical simulation of laminar fluid flow and heat transfer over built-in cylinders in a channel is presented. Effects of cylinders that located in a rectangular channel with constant wall temperature on flow and heat transfer have been investigated by the drag coefficient on cylinders wall, skin-friction factor on channel wall, Strouhal number, pumping factor, Nusselt number, and Performance Index (PI) factor, which denote the heat transfer in terms of the pressure drop. Results are validated by the most reliable published works in the literature. Effects of Reynolds number and blockage ratio (β) for the equilateral triangular cylinder for 120≤Re≤180 and 0.15≤β≤0.55 on flow and heat transfer are investigated with more details. Results indicated that by increasing Re for constant blockage ratio, the drag coefficient, Strouhal number, and Nusselt number increase; but the skin-friction coefficient, pumping factor, and PI factor decrease subsequently. Additionally, with an increase in blockage ratio at constant Re, the drag coefficient, skin-friction coefficient, pumping factor, and Strouhal number grow up; but Nusselt number diminishes and PI factor has an optimum range. Furthermore, results reveal that variation in blockage ratio has more significant effects on the flow and heat transfer than variation in Reynolds number.
Computational Fluid Dynamics (CFD)
Kandassamy K; Prabu Balakrishnan
Abstract
Heat dissipation in electronic circuits is important to maintain their reliability and functionality. In this work, microchannel based bio-inspired flow field models are proposed and numerically analyzed. The proposed flow fields have single to four inlet-outlet pairs. COMSOL is used to do the numerical ...
Read More
Heat dissipation in electronic circuits is important to maintain their reliability and functionality. In this work, microchannel based bio-inspired flow field models are proposed and numerically analyzed. The proposed flow fields have single to four inlet-outlet pairs. COMSOL is used to do the numerical analysis. Conjugate heat transfer analysis is done on the quarter sectional models, utilizing bi-axial symmetry of the flow fields to reduce computational cost. Constant heat flux is applied to the base of the proposed heat sinks. The results show that the thermal and hydraulic resistances of the proposed models are lower than traditional micro-channel arrayed heat sinks. The four inlet-outlet pairs model shows a thermal resistance of 0.121 to 0.158 C/W at constant Re inlet condition, achieved with a pumping power of 0.102-0.126W. Two and four inlet-outlet pair models with aspect ratio 8.6 have a thermal resistance of 0.069 and 0.067 C/W, for pumping powers 2.078 and 4.365 W respectively. The pressure drop of the proposed models is lower than the conventional microchannel arrays.
Computational Fluid Dynamics (CFD)
Ali Akbar rashidi; Ehsan Kianpour
Abstract
Natural convection heat transfer is studied numerically in a triangular enclosure. The enclosure is isosceles right triangle and its bottom wall is hot, the hypotenuse is cold and the other wall is adiabatic. Also, a vertical magnetic field is applied in the enclosure; and there is hybrid nanofluid inside ...
Read More
Natural convection heat transfer is studied numerically in a triangular enclosure. The enclosure is isosceles right triangle and its bottom wall is hot, the hypotenuse is cold and the other wall is adiabatic. Also, a vertical magnetic field is applied in the enclosure; and there is hybrid nanofluid inside the enclosure. This study is conducted for Rayleigh numbers of 103-105, the Hartmann numbers between 0-80, and the volume fraction of nanofluid is between 0-2 percent. Based on the obtained results, as the Hartmann number augments, the temperature of the center of the enclosure decreases due to weakening of the heat transfer flow by increasing the magnetic field forces. In addition, as the Hartmann number augments, the streamlines approach to the walls because the horizontal momentum forces decrease when the Hartmann number increases. Furthermore, by increasing the density of nanoparticles, the heat transfer rate increases, and as a result, heat transfer builds up. Finally, heat transfer improves when the hybrid-nanofluid is employed rather than ordinary nanofluid.
Computational Fluid Dynamics (CFD)
Milad Darabi Boroujeni; Ehsan Kianpour
Abstract
In this study, cooling of a hot obstacle in a rectangular cavity filled with water-CuO nanolfuid has been examined numerically. This cavity has an inlet and outlet and the cold nanofuid comes from the left side of the cavity and after cooling the hot obstacle, it goes out from the opposite site. All ...
Read More
In this study, cooling of a hot obstacle in a rectangular cavity filled with water-CuO nanolfuid has been examined numerically. This cavity has an inlet and outlet and the cold nanofuid comes from the left side of the cavity and after cooling the hot obstacle, it goes out from the opposite site. All of the walls are insulated, and the SIMPLER algorithm has been employed for solving the governing equations. The effects of fluid inertia, magnetic field strength, volume fraction of nanoparticles, and the place of outlet on heat transfer rate has been scrutinized. According to the results, the average Nusselt number builds up as the outlet place goes down. In other words, when the outlet is located at the bottom of the cavity, the rate of the heat transfer is maximum. Moreover, by increasing the Reynolds number and volume fraction of nanoparticles, the average Nusselt number builds up as well.
Computational Fluid Dynamics (CFD)
Shuvam Mohanty; Om Parkash; Rajesh Arora
Abstract
This paper presents a comprehensive and exclusive thermodynamic analysis of counter flow heat exchanger under various operating and geometrical conditions. Analysis system (ANSYS) workbench 14.0 has been used for computational analysis and comparison with previous literature has been carried out in view ...
Read More
This paper presents a comprehensive and exclusive thermodynamic analysis of counter flow heat exchanger under various operating and geometrical conditions. Analysis system (ANSYS) workbench 14.0 has been used for computational analysis and comparison with previous literature has been carried out in view of variable temperature and mass flow rate of hot and cold fluids. An analytical and statistical method of computational fluid dynamics (CFD) analysis is used for simulation and validation of the heat exchanger under steady and dynamic operating conditions. A 3-D model of a heat exchanger having 1000 mm and 1200 mm outside and inside tube lengths with diameter 12.7 mm is designed in ANSYS environment using Renormalization Group (RNG) k-ε approach in order to get the better effectiveness of the system. The variable effects of the steady-state temperature and mass flow rate are investigated. The influence of turbulence over the temperature and pressure profiles is also studied. Moreover, the analytical outcome of the present investigations is compared with that of previous existing literature and found to be in agreement with the previous studies. The proposed analysis presents an in-depth perspective and simulation of temperature gradient profile through the length of heat exchanger. The proposed modified design of heat exchanger along with changing flow direction yields much better results with small computational error 0.66% to 1.004% and 0.83% to 1.05% with respect to change in temperature and mass flow rate respectively.
Computational Fluid Dynamics (CFD)
Omid Khayat; Hossein Afarideh
Abstract
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable ...
Read More
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable of three-phase flow. Hence phase behavior identification in different conditions to designing and modeling of three-phase flow is important. Numerous laboratory and theoretical studies have been done to describe the Venturi multiphase flow meter in both horizontal and vertical flow. However, it is not possible to select the measurement devices for all similar conditions. In this study a new venturi model was developed that implemented in Simulink/Matlab for predicting mass flow rate of gas, water and oil. This models is simple and semilinear. Several classified configurations of three phase flow were simulated using Computational Fluid Dynamics (CFD) analysis to get hydrodynamics parameters of the flows to use as inputs of the model. The obtained data, used as test and train data in Least squares support vector machine (LSSVM) algorithm. The pressure drop, mass flow rate of gas, oil and water have been calculated with LSSVM method. Two tuning parameters of LSSVM, namely γ and σ^2, obtained as 1150954 and 0.4384, 53.9199 and 0.18163, 8.8714 and 0.14424, and 10039130.2214 and 0.74742 for pressure drop, mass flow rate of oil, gas mass flow rate, water mass flow rate, respectively. Developed models was found to have an average relative error of 5.81%, 6.31% and 2.58% for gas, oil and water respectively.
Computational Fluid Dynamics (CFD)
Seyed Masoud Vahedi; Mohammad Sadegh Valipour; Filippo de Monte
Abstract
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension ...
Read More
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluting Stents (HES). For this purpose, the effect of blood pressure is systematically investigated in certain cardiac cycle modes. A comprehensive study is conducted on two classes, pulsatile (time-dependent), to have a more realistic simulation, and non-pulsatile (time-independent) blood flow, each one in four modes. The governing equations applied to drug release dynamics are obtained based on porous media theory. The equations are solved numerically using Finite Volume Method (FVM). Results reveal that there is a significant difference when the plasma flow considered and when it is neglected (regardless of time dependency). Moreover, the concentration level is more decreased in pulsatile blood flow rather than the non-pulsatile blood flow, although the penetration depth for pressure and concentration are nearly 20% and 5% of the wall thickness, respectively. In other words, the mass experienced by the arterial wall is lower in pulsatile blood flow in comparison to non-pulsatile blood flow. As a consequence, the risk of toxicity is declined as the blood pressure increases. Also, it can be seen that the polymer is diffusion-dominated so that no significant changes in the release characteristics are observed in the presence of the plasma filtration.
Computational Fluid Dynamics (CFD)
S. Harimi; Azam Marjani
Abstract
The present work deals with heat transfer characteristics as well as fluid flow patterns in laminar flow regime for a circular cylinder with six control rods arranged in equilateral triangular geometries. The computations have been carried out by a finite volume approach using the overset grid method. ...
Read More
The present work deals with heat transfer characteristics as well as fluid flow patterns in laminar flow regime for a circular cylinder with six control rods arranged in equilateral triangular geometries. The computations have been carried out by a finite volume approach using the overset grid method. The unsteady flow at Re= 200 and Pr= 0.7 and 7.0 was examined. The effect of the control rods on suppression of the fluid forces applied on a main cylinder has been investigated by numerical solution of the Navier-Stokes equations. Based on the results obtained, the arrangement employed in this study indicated the significant performance in reducing the oscillatory force coefficients of the primary cylinder. Except for some gap ratios, it is indicated that both drag and lift coefficients are much lower than that for a single cylinder. Moreover, forced convection heat transfer was calculated using local and mean Nusselt numbers at the surface of the cylinders. The instantaneous streamlines, the vortices and isothermal contours were presented in order to analyze the temperature field and flow field around the cylinders.
Computational Fluid Dynamics (CFD)
brahim Rostane; ALIANE KHALED; said Abboudi
Abstract
The aim of our study is to analyze the impact of insertion holes in the middle of obstacles on the flow around a surface-mounted cube, In order to do this; we studied four configurations of obstacles in a channel with a Reynods number based on obstacle height ReH = 40000. The hexahedral structured meshes ...
Read More
The aim of our study is to analyze the impact of insertion holes in the middle of obstacles on the flow around a surface-mounted cube, In order to do this; we studied four configurations of obstacles in a channel with a Reynods number based on obstacle height ReH = 40000. The hexahedral structured meshes were used to solve the fluid dynamics equations .The finite volume method are employed to solve the governing equations using the ANSYS CFX code and the turbulence model k-ω SST. The streamwise velocity profiles, the Time-averaged streamlines, the turbulence kinetic energy and the drag coefficient are presented. The results showed the appearance of a second vortex behind obstacles with hole from diameter D/H=0.2. The turbulence kinetic energy was greater on top of the obstacle, it was more intense for the obstacle without hole, this intensity decreased as the hole diameter increased. The drag coefficient was improved only for the case D/H=0.32
Computational Fluid Dynamics (CFD)
mohammad saeed sharifi; Miralam Mahdi; Karim Maghsoudi Mehraban
Abstract
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an ...
Read More
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed and the temperature distribution inside it was measured. There was a fan installed at the back of the chamber for drainage. At the chamber entrance, three inlet for entering the flow were considered. The air from the middle inlet was heated by a heater. To prevent heat loss, the body of the enclosure was insulated. Several temperature sensors were installed at certain positions of the chamber for temperature measurement. Using Fluent software, the model of a full-sized chamber was created. Meshing is a hybrid and was used as a boundary layer Mesh. The inlet and outlet temperature of the chamber and the air output rates as boundary conditions were used in the simulation. Numerical analysis for K-ε and K-ω turbulence models was performed and different wall conditions were investigated. The numerical simulation results were in good agreement with the measurement results. Using the K-ε turbulence model with a scalable wall function had a better accuracy than other models. Changes in velocity and temperature were presented in graphs and contours at different positions of the compartment.
Computational Fluid Dynamics (CFD)
Tohid Adibi
Abstract
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity ...
Read More
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results are simplified to two dimensional flows. Pseudo Mach hyper-cone (four dimensional cone) are found and its cross-section with physical axis is calculated numerically. Unlike compressible flow, this is not a sphere. It is found that the pseudo acoustic speed within the incompressible flow is function of artificial compressibility parameter and the directions. In two dimensional, Pseudo Mach cone is obtained by numerical solution of characteristic equations. Unlike compressible flow, the cross section of Mach cone with x-y plane is not circle. This shape is not oval, too. The influence of artificial compressibility parameter on convergence history and accuracy was surveyed by simulation of cavity flow as a benchmark
Computational Fluid Dynamics (CFD)
Muhim Chutia
Abstract
The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient ...
Read More
The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient through non-uniform plate temperature. It is assumed that the fluid injection occurs at lower plate and fluid suction occurs at upper plate. The governing equations of momentum and energy are transformed into coupled and nonlinear ordinary differential equations using similarity transformation and then solved numerically using finite difference technique. Numerical values for the velocity and temperature have been iterated by Gauss Seidal iteration method in Matlab programming to a suitable number so that the convergent solutions of velocity and temperature are considered to be achieved. Numerical results for the dimensionless velocity and the temperature profiles for different governing parameters such as the Hartmann Number (M) angle of inclination of magnetic field (α), suction Reynolds number (Re) Prandtl Number (Pr), Eckert number (Ec) and variable thermal conductivity (ԑ) have been discussed in detail and presented through graphs.
Computational Fluid Dynamics (CFD)
chakravarthula S K Raju; P DurgaPrasad; S.V.K. Varma
Abstract
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically ...
Read More
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrous particles with base fluids. Also, dual solutions for Casson Ferrofluid flow over a cone with rotation and without rotation effects were presented. An agreement of the present solutions with those published in literature was found. The effect of dimensionless parameters on velocity, temperature and concentration profiles along with the friction factor coefficients, Nusselt number, and the Sherwood numbers were discussed with the help of graphs and tables. It was found that the volume fraction of Ferro nanoparticles, magnetic field parameter, and Brownian motion parameters are controlling the friction factor coefficients, Nusselt number and Sherwood numbers for both the rotation and without rotation effects cases.
Computational Fluid Dynamics (CFD)
Siamak Gharahjeh; Ammar Ashraf; Ghorban Mahtabi
Abstract
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit ...
Read More
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equations were attempted. A fairly fine uniform grid was adopted for all the cases after a technical procedure was applied to come up with the proper mesh size that would make the solution roughly independent of mesh quality. The solutions obtained for different Reynolds numbers are presented and compared. Superiority of numerical approaches was investigated and compared to benchmark solutions available in the literature. Based on the results of the present research, it can be claimed that explicit scheme used for primitive variable formulation can be only half the way (as in Re=2500 for explicit to Re=5000 for ADI and implicit schemes) as successful as the other two numerical methods due to its relative simplicity.
Computational Fluid Dynamics (CFD)
Ghanbarali Sheikhzadeh; Mahdi Mollamahdi; Mahmoud Abbaszadeh
Abstract
In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. ...
Read More
In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled nonlinear ordinary differential equations using stream function.These equations can be solved using the different numerical method. The numerical solution is conducted using fourth order Rung-Kutta method. With comparing the results obtained from the analytical and numerical methods, a good adaptation can be seen between them. It can also be observed that the results of the Galerkin method have further conformity with the numerical results and the Galerkin method is simpler than the least square method and requires fewer computations. The effects of Reynolds number, Prandtl number and power law index of non-Newtonian fluid is examined on flow field and heat transfer. The results show that Nusselt number increases by increasing Reynolds number, Prandtl number, and power law index.